
WHITE PAPER

page 1 of 9Corigine Inc.

Programming NFP with P4 and C

CONTENTS

INTRODUCTION..1

PROGRAMMING THE NFP WITH P4..1

PROGRAMMING THE NFP WITH C...5

CONCLUSION... 9

THE NFP FAMILY OF

FLOW PROCESSORS

ARE SOPHISTICATED

PROCESSORS

SPECIALIZED TOWARDS

HIGH-PERFORMANCE

FLOW PROCESSING.

INTRODUCTION

This whitepaper describes the programming options for the Corigine Network Flow Pro-

cessor (NFP) used on the Agilio® SmartNICs. The Agilio SmartNIC is supplied with Agilio Soft-

ware, which has a comprehensive set of features mainly based on Open vSwitch offloads. In

the case that there is a requirement for customization of the NFP data path by users, the NFP

can also be programmed for the custom packet/flow processing using P4 and C languages.

The NFP family of flow processors are sophisticated processors specialized towards high-per-

formance flow processing. The NFP programming environment comes with a set of libraries,

and common packet processing functions. The NFP has multiple PCIe Gen-3 interfaces for

high-speed data/packet transfer between the host and the NFP. Software running on general

purpose CPUs can also control the behavior of the data plane running on the NFP through the

API calls. The NFP software typically implements the data plane of a networking application

with the control plane (and additional data plane code) running on the host.

The NFP comes with a Software Development Kit (SDK), which has a compiler, linker and cy-

cle accurate simulator in an Integrated Development Environment running as a graphical user

interface (GUI) on windows platform. The SDK also comes with the command line interface

versions of the compiler, linker and simulator necessary for running and debugging the code

on an Agilio SmartNIC. In this paper, we provide an introduction of NFP programming using

the P4 and C languages. The SDK provide complete software development and debug envi-

ronment for packet/flow processing programs written in P4 and C languages.

PROGRAMMING THE NFP WITH P4

P4 is a target independent network programming language where users can write the for-

warding behavior of the network devices (ASIC/NPUs/FPGAs) using the standard forwarding

model defined in the P4 architecture. P4 allows the user to create their own headers and

WHITE PAPER: Programming NFP with P4 and C

page 2 of 9Corigine Inc.

protocols along with their processing behavior in a networking device.

The packet-processing model proposed by the P4 language is shown in figure below. The user

writes the datapath of a network device in P4 language without any knowledge of the target

hardware device (ASIC, FPGA or NPU). The tool chain (compiler and linker), developed by the

device vendor converts the P4 program into the device specific firmware. The P4 tool chain

also generates a run time API (similar to the OpenFlow model) to allow the match action table

modification.

P4 Program for datapath configuration
(parser + Ingress MA + Egress MA)

with the control path.

P4 Tool Chain

Packet In Packet Out
Packet Parser
defined by P4

Tra�c
Manager

Ingress Match-
Action Table

defined in P4
Program

Egress Match-
Action Table

defined in P4
Program

Run Time API generated by
compiler for MA table modification

App.P4

App.IR

Runtime I/FTabledata.JSON

P4 FE Compiler

P4 BE Compiler

Network Flow C compiler (nfcc)

App. Firmware

Sandbox C

Stateful Filtering
Filter packets of fixed IP addresses
Filter the IP address with TCP ports,
 add VLAN tag

Stateful Statistics
Count a flow — with a fixed IP address
IPv4/6 statistics

MAC/IP address filtering
New tunnels processing
Insert new metadata
Match on certain fields
Mirror based on metadata
Truncate mirrored packet
Attach timestamp to packet

Runtime API generated
by P4 compiler

Agilio SmartNIC

Yml-based IR
from OpenSDN.org

Open source P4 compiler
integrated in SDK from P4.org
enhanced to supprt the IR
layer from OpenSDN.org

Since P4 is meant for hardware independent programming (flow processing), the user does

The SDK supports P4 syntax as defined on the P4 specifications published on P4 consortium

website (www.p4.org). Corigine has integrated the open source P4 compiler in the SDKto

generate an intermediate representation (App.IR) of the P4 program in the yaml format,

which is further compiled by the P4 back-end compiler to generate a C program for the data

path on the NFP. P4 programming support on the SDK is shown in the figure below.

Corigine’s
back-end compiler

WHITE PAPER: Programming NFP with P4 and C

page 3 of 9Corigine Inc.

not need to be aware of the any NFP specific data structures. The P4 compiler and linker

automatically maps the different part of the P4 program into the NFP internal resources in an

efficient manner.

The figure below shows an example of a very simple P4 program.

 The above program has:

1. Header definition

2. Parser with packet field extraction

3. Action table

4. Control flow for ingress packets

The NFP software development kit (SDK) has an inbuilt editor for editing and compiling the

P4 programs and generating the firmware for loading on the Agilio SmartNIC. When the

P4 program is compiled using the SDK, parse graph, ingress/egress packet processing flow

graphs are generated. The P4 compilation also generates the packet processing pipeline code

in yaml language based intermediate representation (IR) format.

WHITE PAPER: Programming NFP with P4 and C

page 4 of 9Corigine Inc.

The P4 back-end compiler compiles the yaml program into the C program, which can be com-

piled and linked to generate the NFP firmware using the network flow C compiler (NFCC). The

firmware generated by the P4 code is loaded on multiple processing engines (referred as flow

processing cores in the NFP), each of which can independently process packets according

FOR BOTH P4

AND C LANGUAGE

PROGRAMMING,

CORIGINE PROVIDES

THE COMPREHENSIVE

LIBRARIES AND

LOW-LEVEL ACCESS

FUNCTIONS FOR

STANDARD PACKET

PROCESSING.

WHITE PAPER: Programming NFP with P4 and C

page 5 of 9Corigine Inc.

to the packet processing code written as a P4 program. An engine idles in a loop waiting for

a packet to arrive and start processing when a new packet arrives. Management logic in the

processor provides the execution guarantees required by P4 program. A P4 program has to

be developed assuming it is running in switch architecture as specified in P4 specification.

Optionally, a P4 processing can be mixed with the C processing as C provides architecture

aware stateful processing. This is termed as a P4 data path with C sandbox. For inclusion of

the C sandbox into the P4 code, users need to define the action as a “primitive_action” which

is a P4 construct.

The following example illustrates the use of the C sandbox with the P4 code.

If the compiler encounters a “primitive_action” in a P4 program, it inserts the C function call

for that action which is specified in a separate C file in the SDK project. Below is an example

of the plugin C sandbox function.

PROGRAMMING THE NFP WITH C

The C programming language is a most efficient way of programming the Agilio SmartNIC as

it can take advantage of NFP architecture specific data structures. Agilio software features are

also implemented as C programs. The C programming on the NFP is slightly different from the

host-based generic C programming, as the NFP data structures and memories are specific to

the NFP architecture, so it is similar to any custom embedded programming.

The C programming language for the NFP is supported by a highly optimizing NFCC. The

WHITE PAPER: Programming NFP with P4 and C

page 6 of 9Corigine Inc.

.list file

FPC

Network Flow
C Compiler

(NFCC)

C source code

Code

Data

FPC

Code

Data

FPC

Code

Data

FPC

Code

Data

■

■

■

■

THE C PROGRAMMING

LANGUAGE IS A MOST

EFFICIENT WAY OF

PROGRAMMING THE

AGILIO INTELLIGENT

SERVER ADAPTER AS IT

CAN TAKE ADVANTAGE

OF NFP ARCHITECTURE

SPECIFIC DATA

STRUCTURES.

NFCC compiler offers several “extensions” to the C programming language, mostly through

annotations, which allow a programmer to have better control over the generated code. This

ultimately imposes a small number of restrictions on the programmer, which are rooted in the

specifics of the Corigine flow processing cores architecture.

The Flow Processing Cores (FPCs) are fairly standard, RISC based, multi-threaded cores,

which can be programmed in a variant of C. What distinguishes the NFP from general

purpose CPUs is that the FPCs are connected to a number of functional units, implementing

specialized functionality aimed at accelerating different aspects of packet processing.

The FPCs are distributed across the NFP in island architecture and each FPC island has multi-

ple flow processing cores. Each FPC core has an ALU with its own code and data memory.

Each FPC has 8 hardware contexts or threads. These threads share the same ALU and only

one of them is actively running at a given time. The threads in a FPC are non-preemptive and

the thread scheduling is done explicitly and cooperative: A context must explicitly release

control (yield) for other contexts to run. This non-preemptive nature significantly simplifies

synchronization within a FPC,

Figure below shows the C programming methodology of FPCs.

A C program is compiled from a number of C source-code files (and supporting header .h

files) which are linked together into a .list file. Each .list file represents one complete program,

and copies of this program to be loaded onto one or more specified FPCs. When we want

different FPCs to run different programs, the compiler must produce different .list files, each

compiled from particular C source code files, and to specify which FPC is to be loaded with

which .list file. (Of course, the user can share C source-code and header files across several

programs; in that case the .list file for each program would include the shared code.)

Along with the code store and data store for each FPC there are four other kinds of memories,

which are accessible by the FPCs (C programs) through the keywords and constructs defined

in Corigine Compiler User Guide:

■ Cluster Local Scratch (CLS)

■ Cluster Target Memory (CTM)

■ Internal Memory (IMEM)

■ External Memory (EMEM)

WHITE PAPER: Programming NFP with P4 and C

page 7 of 9Corigine Inc.

The C programs can be compiled and linked to generate the NFP firmware using the SDK.

The SDK runs on Windows platform as a graphical user interface. The SDK has integrated

simulator with a complete view of the NFP memory contents, C program variables and thread

execution history which provide simplified debug and development environment. Using the

SDK, the programmer can insert break points into the programs and can run the C programs

step by step on each of the FPC threads.

C programs can also be compiled and linked using the command line tool chain running in

standard Linux environments.

The figure below represents the compilation of the C programs for NFP using the SDK.

The above memories can work as packet header and data storage and they have different

densities and latencies. All of CLS, CTM, IMEM and EMEM contain multiple functional units or

“Memory Engines” which do many more operations than simple read and write. Corigine

provides the command and libraries to access those memories.

Below is an example of the simple C program for array reversal in the CTM memory, notice

that the arrays are declared in one of the memories (Cluster Target Memory or CTM) de-

scribed above. In the case no specific memory is assigned the compiler assigns it by itself

but for the efficient flow processing, it is important to explicitly understand and declare the

storage for the data structures.

WHITE PAPER: Programming NFP with P4 and C

page 8 of 9Corigine Inc.

Editor

C compiler (nfcc)

Loader

Simulator

Linker C scripting

Hardware Debugger

Packet_filter.c

SDK - Integrated Development Environment (IDE)

Agilio SmartNIC

The SDK debug and watch window for a C program is shown in the figure below. As the figure

shows the SDK has different memory watch windows and also allows the visibility of variables

declared in the C program.

The SDK also has a hardware debugger, which runs on the host with the Agilio SmartNIC and

interacts with the NFP through the host PCIe interface. The hardware debugger communi-

cates with the SDK through a TCP connection. Using the hardware debugger, the C programs

WP-ProgNFP-wP4-C-3/2017

WHITE PAPER: Programming NFP with P4 and C

can be downloaded debugged on Agilio SmartNIC in real time. The advantage of using the

hardware debugger is that the program execution and debugging can be performed at hard-

ware speed.

CONCLUSION

As described throughout this paper the NFP comes with full P4 and C languages program-

ming support. Though most of the Agilio SmartNIC features are already implemented in the

Agilio software, such as OVS offload, tunnel encapsulation and de-capsulation, load balancing

etc., the P4 and C language programming allows the user to implement the customization of

the packet processing datapath.

For both P4 and C language programming, Corigine provides comprehensive libraries and

low-level functions for standard packet processing. These libraries and function calls which

include packet read-write from NFP memories, key lookup, hash and checksum calculations

(and more) help a user to focus on programming at a higher level without getting into the

lower level architectural details of the NFP.

page 9 of 9

Email: sales@corigine.com
www.corigine.com.cn

©2020 Corigine. All rights reserved.

Corigine, the Corigine logo are trademarks
or registered trademarks of Corigine. All
other trademarks mentioned are registered trademarks or
trademarks of their respective owners in the United States and
other countries.

