Corigine 444

WHITE PAPER

Programming NFP with P4 and C

CONTENTS
THE NFP FAMILY OF
FLOW PROCESSORS INTRODUCTION 1
ARE SOPHISTICATED PROGRAMMING THE NFP WITH P2 .o 1
PROCESSORS
CPECIALIZED TOWARDS PROGRAMMING THE NFP WITH C oo 5
HIGH-PERFORMANCE CONCLUSION o 9
FLOW PROCESSING.

INTRODUCTION

This whitepaper describes the programming options for the Corigine Network Flow Pro-
cessor (NFP) used on the Agilio® SmartNICs. The Agilio SmartNIC is supplied with Agilio Soft-
ware, which has a comprehensive set of features mainly based on Open vSwitch offloads. In
the case that there is a requirement for customization of the NFP data path by users, the NFP
can also be programmed for the custom packet/flow processing using P4 and C languages.

The NFP family of flow processors are sophisticated processors specialized towards high-per-
formance flow processing. The NFP programming environment comes with a set of libraries,
and common packet processing functions. The NFP has multiple PCle Gen-3 interfaces for
high-speed data/packet transfer between the host and the NFP. Software running on general
purpose CPUs can also control the behavior of the data plane running on the NFP through the
API calls. The NFP software typically implements the data plane of a networking application
with the control plane (and additional data plane code) running on the host.

The NFP comes with a Software Development Kit (SDK), which has a compiler, linker and cy-
cle accurate simulator in an Integrated Development Environment running as a graphical user
interface (GUI) on windows platform. The SDK also comes with the command line interface
versions of the compiler, linker and simulator necessary for running and debugging the code
on an Agilio SmartNIC. In this paper, we provide an introduction of NFP programming using
the P4 and C languages. The SDK provide complete software development and debug envi-
ronment for packet/flow processing programs written in P4 and C languages.

PROGRAMMING THE NFP WITH P4

P4 is a target independent network programming language where users can write the for-
warding behavior of the network devices (ASIC/NPUs/FPGAS) using the standard forwarding
model defined in the P4 architecture. P4 allows the user to create their own headers and

Corigine Inc. page1of 9

WHITE PAPER: Programming NFP with P4 and C

protocols along with their processing behavior in a networking device.

The packet-processing model proposed by the P4 language is shown in figure below. The user
writes the datapath of a network device in P4 language without any knowledge of the target
hardware device (ASIC, FPGA or NPU). The tool chain (compiler and linker), developed by the
device vendor converts the P4 program into the device specific firmware. The P4 tool chain
also generates a run time API (similar to the OpenFlow model) to allow the match action table
modification.

P4 Program for datapath configuration
(parser + Ingress MA + Egress MA)
with the control path.

Packet In R Trafi Packet Out
) Bl PRI Ingress Match- rarric Egress Match- (-
defined by P4 Action Table Manager Action Table
defined in P4 defined in P4
Program Program

The SDK supports P4 syntax as defined on the P4 specifications published on P4 consortium
website (www.p4.org). Corigine has integrated the open source P4 compiler in the SDKto
generate an intermediate representation (App.IR) of the P4 program in the yaml format,
which is further compiled by the P4 back-end compiler to generate a C program for the data
path on the NFP. P4 programming support on the SDK is shown in the figure below.

Open source P4 compiler
integrated in SDK from P4.org Sandbox C
enhanced to supprt the IR

layer from OpenSDN.org

Yml-based IR
from OpenSDN.
MAC/IP address filtering om UpEnsBorg

i . Corigine’s
mi\évrttizr\:velswgtrg;i:ng B Gy bacf—end compiler
Filter the IP address with TCP ports,

Match on certain fields
add VLAN tag

Mirror based on metadata .
Truncate mirrored packet Network Flow C compiler (nfcc)
Stateful Statistics

Attach timestamp to packet

Stateful Filtering
Filter packets of fixed IP addresses

Count a flow — with a fixed IP address

\—/_\ App. Firmware IPv4/6 statistics

Runtime API generated
by P4 compiler

IELEREICNNO N —)- Runtime I/F

Agilio SmartNIC

Since P4 is meant for hardware independent programming (flow processing), the user does

Corigine Inc. page 2 of 9

WHITE PAPER: Programming NFP with P4 and C

not need to be aware of the any NFP specific data structures. The P4 compiler and linker
automatically maps the different part of the P4 program into the NFP internal resources in an
efficient manner.

The figure below shows an example of a very simple P4 program.

header_ type eth_hdr {

fields {
dst : 48;
arc : 48;

etype : 16;
}
}

header eth hdr eth:;

parser start {
return eth_parse;

}

parser eth parse ({
extract (eth)
return ingress;

}

action drop_act() {
drop() s
}

table in_tbl {
actions {
drop_act;
}
}

The above program has:

1. Header definition

2. Parser with packet field extraction
3. Action table

4. Control flow for ingress packets

The NFP software development kit (SDK) has an inbuilt editor for editing and compiling the
P4 programs and generating the firmware for loading on the Agilio SmartNIC. When the

P4 program is compiled using the SDK, parse graph, ingress/egress packet processing flow
graphs are generated. The P4 compilation also generates the packet processing pipeline code
in yaml language based intermediate representation (IR) format.

Corigine Inc. page 30f 9

WHITE PAPER: Programming NFP with P4 and C

File Edit Views Tools Windows Help

(=l AR SS ., B 2C RS B38 & |
[/ Palette =18
New

@R eebd

4)Explorer ' @ simple_router = @ p4_simple_router & simple_router s

Files ' Parse Graph Ingress Graph Egress Graph YAML =

100 erc_lineno

101

102 parse_ipvd

101 type : parse_state

104 extracts

103 - ipvd

108 src_tilename /hone/dgeorge/work/scratch/pddeno_2015_06_26/pddeno/pderc/ includes/parser.pé
07 src_lineno)

108

109 2HH # J
10§ Parser #

FOR BOTH P4 S "

12
AND C LANGUAGE wparser
14 type : parser
13 format : dot
PROGRAMM'NG, 16 start_state : start
17 inplementation : >-
us digraph {

CORIGINE PROVIDES 29 start -> parse_sthernet [value='default

120 parse_ethernet -> parse_ipvd [value="0x80¢

. mask="none")

", nagsk="none"] g

THE COMPREHENSIVE iis =t = e I 3l

LIBRARIES AND | Taceback and Output browser -008
‘ Tracebacks Output Errors Tasks

LOW-LEVEL ACCESS Fengrating AIR output for /home/dgeorge/work/scratch/pddemo 2015 06 _26/pddemo/pdsrc/simple_router.p4 z|
FUNCTIONS FOR
STANDARD PACKET File Edit Views Tools Windows Help |

PROCESSING. 8 AR . &

& Palette =1®
New N
383 e €03

l d)Explorer | @simple_router = ¢ parser 1 p4 simple router € simple router .

Files = Parse Graph = IngressGraph Egress Graph YAML

€ Traceback and Output browser “g1®
‘ Tracebacks Output Errors Tasks

The P4 back-end compiler compiles the yaml program into the C program, which can be com-
piled and linked to generate the NFP firmware using the network flow C compiler (NFCC). The
firmware generated by the P4 code is loaded on multiple processing engines (referred as flow
processing cores in the NFP), each of which can independently process packets according

Corigine Inc. page 4 of 9

WHITE PAPER: Programming NFP with P4 and C

to the packet processing code written as a P4 program. An engine idles in a loop waiting for
a packet to arrive and start processing when a new packet arrives. Management logic in the
processor provides the execution guarantees required by P4 program. A P4 program has to
be developed assuming it is running in switch architecture as specified in P4 specification.

Optionally, a P4 processing can be mixed with the C processing as C provides architecture
aware stateful processing. This is termed as a P4 data path with C sandbox. For inclusion of
the C sandbox into the P4 code, users need to define the action as a “primitive_action” which
is a P4 construct.

The following example illustrates the use of the C sandbox with the P4 code.

action encap_act(prt, tag) {
filter func();
modify field(standard metadata.egress_spec, prt);
xlan_encap (tag);

}

primitive action filter_ func();

If the compiler encounters a “primitive_action” in a P4 program, it inserts the C function call
for that action which is specified in a separate C file in the SDK project. Below is an example
of the plugin C sandbox function.

#include <pif_ plugin.h>
#define IP _ADDR(a, b, c, d) ((a << 24) | (b << 16) | (c << 8) | d)

int pif plugin_ filter func (EXTRACTED HEADERS T *headers, MATCH_DATA T *data)
{
PIF_PLUGIN_ipv4_T *ipv4;

if (! pif_plugin hdr_ ipv4_present (headers)) {
return PIF_PLUGIN_ RETURN_DROP;

}

ipv4 = pif plugin_hdr_get_ipv4 (headers) ;

if (ipv4->dst == IP_ADDR(10,0,0,100)) {
return PIF_PLUGIN_RETURN_ DROP;

}

return PIF PLUGIN_ RETURN_ FORWARD;

PROGRAMMING THE NFP WITH C

The C programming language is a most efficient way of programming the Agilio SmartNIC as
it can take advantage of NFP architecture specific data structures. Agilio software features are
also implemented as C programs. The C programming on the NFP is slightly different from the
host-based generic C programming, as the NFP data structures and memories are specific to
the NFP architecture, so it is similar to any custom embedded programlmming.

The C programming language for the NFP is supported by a highly optimizing NFCC. The

Corigine Inc.

page 50of 9

WHITE PAPER: Programming NFP with P4 and C

THE C PROGRAMMING
LANGUAGE IS A MOST
EFFICIENT WAY OF
PROGRAMMING THE
AGILIO INTELLIGENT
SERVER ADAPTER AS IT
CAN TAKE ADVANTAGE
OF NFP ARCHITECTURE
SPECIFIC DATA
STRUCTURES.

NFCC compiler offers several “extensions” to the C programming language, mostly through
annotations, which allow a programmer to have better control over the generated code. This
ultimately imposes a small number of restrictions on the programsnmer, which are rooted in the
specifics of the Corigine flow processing cores architecture.

The Flow Processing Cores (FPCs) are fairly standard, RISC based, multi-threaded cores,
which can be programmed in a variant of C. What distinguishes the NFP from general
purpose CPUs is that the FPCs are connected to a number of functional units, implementing
specialized functionality aimed at accelerating different aspects of packet processing.

The FPCs are distributed across the NFP inisland architecture and each FPC island has multi-
ple flow processing cores. Each FPC core has an ALU with its own code and data memory.

Each FPC has 8 hardware contexts or threads. These threads share the same ALU and only
one of them is actively running at a given time. The threads in a FPC are non-preemptive and
the thread scheduling is done explicitly and cooperative: A context must explicitly release
control (yield) for other contexts to run. This non-preemptive nature significantly simplifies
synchronization within a FPC,

Figure below shows the C programming methodology of FPCs.

Network Flow

Csourcecode (WS onniler [list file

(NFCCO)

A C program is compiled from a number of C source-code files (and supporting header .h
files) which are linked together into a .list file. Each .list file represents one complete program,
and copies of this program to be loaded onto one or more specified FPCs. When we want
different FPCs to run different programs, the compiler must produce different list files, each
compiled from particular C source code files, and to specify which FPC is to be loaded with
which list file. (Of course, the user can share C source-code and header files across several
programs; in that case the .list file for each program would include the shared code.)

Along with the code store and data store for each FPC there are four other kinds of memories,
which are accessible by the FPCs (C programs) through the keywords and constructs defined
in Corigine Compiler User Guide:

m Cluster Local Scratch (CLS)

m Cluster Target Memory (CTM)
= Internal Memory (IMEM)

m External Memory (EMEM)

Corigine Inc.

page 6 of 9

WHITE PAPER: Programming NFP with P4 and C

The above memories can work as packet header and data storage and they have different
densities and latencies. All of CLS, CTM, IMEM and EMEM contain multiple functional units or
“Memory Engines” which do many more operations than simple read and write. Corigine
provides the command and libraries to access those memories.

Below is an example of the simple C program for array reversal in the CTM memory, notice
that the arrays are declared in one of the memories (Cluster Target Memory or CTM) de-
scribed above. In the case no specific memory is assigned the compiler assigns it by itself
but for the efficient flow processing, it is important to explicitly understand and declare the
storage for the data structures.

#include <nfp.h>

__declspec(ctm export scope(island))
int old[] = {1, 2, 3,4,5,6,7, 8,9, 10};
__declspec(ctm export scope(island))
int new|sizeof(old)/sizeof(int)];

int
main(void)
{
if (__ctx()==0) {
int i, size;
size = sizeof(old)/sizeof(int);
for (i=0; i < size; i++) {
newl[i] = old|[size - i - 1];
}
¥

return 0;

}

The C programs can be compiled and linked to generate the NFP firmware using the SDK.
The SDK runs on Windows platform as a graphical user interface. The SDK has integrated
simulator with a complete view of the NFP memory contents, C program variables and thread
execution history which provide simplified debug and development environment. Using the
SDK, the programmer can insert break points into the programs and can run the C programs
step by step on each of the FPC threads.

C programs can also be compiled and linked using the command line tool chain running in
standard Linux environments.

The figure below represents the compilation of the C programs for NFP using the SDK.

Corigine Inc. page 7 of 9

WHITE PAPER: Programming NFP with P4 and C

I
Hardware Debugger

CE

banmal .
b it

i Agilio SmartNIC

The SDK debug and watch window for a C program is shown in the figure below. As the figure
shows the SDK has different memory watch windows and also allows the visibility of variables
declared in the C program.

or Help, select Help-> Help Topics on the main menu

[JLmESET R PR TRendVIow] | B o)
— — =
¥l Memcry Wetches annamed>] (Add Watch..] (Refesh) (4] [14080 | (9]) Baordeh (Coee] b
[emem |21 mem | [Fces | [IcTm | [Gyeto |[TRA | [Dl big enction kngwerds | || | Babwt_J
INEM Ve Vabse NBI| Device | Port| Channel | Ingress Pl..]lﬂgrns ...llgms Pa... Egress...](onlig.. Ilngn:ss e | Egress ..
123 mem|l 1023] 0 |ETH |0 135996 301 25784 100000 9045 2083
23 menin 15) 0x0001£60000000000 | ©x0000000000000000 P | =1
(23.mem{16:31)] 0x0000000000000000 | ©x0000000000000000 - ETHEL0 LDW4 128 B052 100000 100346 }18597
23 mem{3247] 0x0000000000000000 | ©x0000000000000000
(29 mem48 €3] 0x0000000000000000 | 0x0000000000000000
23 memmifA 73] 0x0000000000000000 | 0x0600000000000000
29 mem{20 %5 0x0000000000000000 | 0x0000000000000000
e e e
™ Vishoo Vahoo
i32.cam{0.1023)
Rcn{0:15] 0x2000003c05000234 | 0x0234000003000000
iRan1631] 0x0106000034020806 _ OxSaSaSaSaSaSasasa
12ctm{1247] OxSa5aSaSaSaSaSaSs OxSaSaSaSaSaSaSaSa
132.cm{48 63] 0xSaS5aSaSaSaSaSasSa Ox80e0000000000000
(R2cm{6479) 0x2233445566771122 Ox3344556608004500
1R2cn{8095) 0x002¢000100004011 | 0x608b0a0000341000
S ST SRR
EINBI Memory Watches [annamed>] [Add Watch._] [Refresh] (4] [14080 | (3] 703 ME Watch..| [Add Cho CSR Watch...| [Refeah | (4] [14083 | (]
|1 NB! BDesc |1 TM ReosderB |[] TM Pt |[) TM Desc | [M RDeta || PM e | Vs Descrpton Scepe
™Re rrven Vebo 10001 rbetrafd) 0x0000001e | GPR - Mcroengne 2.0
18 smpka[240:255) 0OxSaSaSaSaSaSsSaSa (CxSaSaSaSaSaSaSasa ag:"’“"m 0x00000016 g:;'“’w"';';g
1Bsrpk[256.271)] 0x£0e0000000000000 0x2233445566771122 000 iebctrel?) 9200000000 Mcmengnel
18 mpka[272.287) 0x3344556608004500 | 0x002e000100004011 @001 Inbetrs{) Cx80100106 JOPR - Mcsoenghe 129
10001 pktaddr 0x20£20040 (?) | GPR - Thwad0in 320
1B ampka[263.303) 0x608d0a0000321000 | 0x0000000600160018 O o0 TR eI 5D
18 ampka[304:319) 0x3416000102030405 | 0x060702030a0b0c0d S T R T
1B mpka[320:335) 0x0e0£101100000000 | OxSaSaSaSasaSaSasa E Tt e e
18 ampla[335:351) OxSaSaSaSaSaSaSaSa OxSaSaSaSaSaSaSaSa 2001 " d-iw > GPR- 0 320
1Bampka[352.367) OxSaSaSaSaSaSaSaSa OxSaSaSaSaSaSaSasa weeddr L SV0 Qe veed
18 ampka 363 383) OxSaSaSaSaSaSaSaSs CxSaSaSaSaSaSaSasa bl S8 MacStutaAdrbbap. 0x0000012d | CSR G000 00900004
18 ampka[384:359) 0x20e0000000000000 | 0x2233445566771122 bl 8 MocStetadc bep. 0200000000 | CSR G:0000 000100044
7438 Mac QutsAdMap 0x00000652 | CSR O:0000 (x00100040
18 ampka[400 415) 0x3344556608004500 | 0x002¢000100004012
iBampia[416:431) 0x603a0a0000251000 | 0x0000000b0016001a
iBampk[432.447] 0x9423000102030405 | 0x06070£090a060c0d
1B ampka[443:463] 0x0e0£101100000000 | Ox5aSaSaSaSaSaSaSa
18 smpka[464.475] OxS5aSaS5a5aSa5a5asSa
18 ampiat 480 £%5] OxSaS5a5aSaSaSaSaSa COxSaSaSaSaSaSaSaSa

The SDK also has a hardware debugger, which runs on the host with the Agilio SmartNIC and
interacts with the NFP through the host PCle interface. The hardware debugger communi-
cates with the SDK through a TCP connection. Using the hardware debugger, the C programs

Corigine Inc.

page 8 of 9

WHITE PAPER: Programming NFP with P4 and C

can be downloaded debugged on Agilio SmartNIC in real time. The advantage of using the
hardware debugger is that the program execution and debugging can be performed at hard-
ware speed.

CONCLUSION

As described throughout this paper the NFP comes with full P4 and C languages program-
ming support. Though most of the Agilio SmartNIC features are already implemented in the
Agilio software, such as OVS offload, tunnel encapsulation and de-capsulation, load balancing
etc., the P4 and C language programming allows the user to implement the customization of
the packet processing datapath.

For both P4 and C language programming, Corigine provides comprehensive libraries and
low-level functions for standard packet processing. These libraries and function calls which
include packet read-write from NFP memories, key lookup, hash and checksum calculations
(and more) help a user to focus on programming at a higher level without getting into the
lower level architectural details of the NFP.

Corigine

Email: sales@corigine.com
WWW.corigine.com.cn

©2020 Corigine. All rights reserved

Corigine, the Corigine logo are trademarks

or registered trademarks of Corigine. All

other trademarks mentioned are registered trademarks or
trademarks of their respective owners in the United States and
other countries

WP-ProgNFP-wP4-C-3/2017 page 9 of 9

